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ETH Zürich, Switzerland

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington–Seattle

Roger Newson
Imperial College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California–Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
University of Virginia

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager

Stata Press Copy Editor

Lisa Gilmore

Gabe Waggoner

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press. Stata and Mata are

registered trademarks of StataCorp LP.



The Stata Journal (2006)
6, Number 4, pp. 482–496

Testing for cross-sectional dependence in
panel-data models

Rafael E. De Hoyos
Development Prospects Group

The World Bank
Washington, DC

rdehoyos@worldbank.org

Vasilis Sarafidis
University of Sydney

Sydney, Australia
v.sarafidis@econ.usyd.edu.au

Abstract. This article describes a new Stata routine, xtcsd, to test for the
presence of cross-sectional dependence in panels with many cross-sectional units
and few time-series observations. The command executes three different test-
ing procedures—namely, Friedman’s (Journal of the American Statistical Associ-
ation 32: 675–701) (FR) test statistic, the statistic proposed by Frees (Journal of
Econometrics 69: 393–414), and the cross-sectional dependence (CD) test of Pe-
saran (General diagnostic tests for cross-section dependence in panels [University
of Cambridge, Faculty of Economics, Cambridge Working Papers in Economics,
Paper No. 0435]). We illustrate the command with an empirical example.

Keywords: st0113, xtcsd, panel data, cross-sectional dependence

1 Introduction

A growing body of the panel-data literature concludes that panel-data models are likely
to exhibit substantial cross-sectional dependence in the errors, which may arise be-
cause of the presence of common shocks and unobserved components that ultimately
become part of the error term, spatial dependence, and idiosyncratic pairwise depen-
dence in the disturbances with no particular pattern of common components or spatial
dependence. See, for example, Robertson and Symons (2000), Pesaran (2004), Anselin
(2001), and Baltagi (2005, sec. 10.5). One reason for this result may be that during
the last few decades we have experienced an ever-increasing economic and financial
integration of countries and financial entities, which implies strong interdependencies
between cross-sectional units. In microeconomic applications, the propensity of individ-
uals to respond similarly to common “shocks”, or common unobserved factors, may be
plausibly explained by social norms, neighborhood effects, herd behavior, and genuinely
interdependent preferences.

The impact of cross-sectional dependence in estimation naturally depends on a va-
riety of factors, such as the magnitude of the correlations across cross sections and
the nature of cross-sectional dependence itself. If we assume that cross-sectional depen-
dence is caused by the presence of common factors, which are unobserved (and the effect
of these components is therefore felt through the disturbance term) but uncorrelated
with the included regressors, the standard fixed-effects (FE) and random-effects (RE)
estimators are consistent, although not efficient, and the estimated standard errors are

c© 2006 StataCorp LP st0113
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biased. Thus different possibilities arise in estimation. For example, one may choose to
retain the FE/RE estimators and correct the standard errors by following the approach
proposed by Driscoll and Kraay (1998).1 This method can be implemented in Stata by
using the command xtscc, which is forthcoming to Statalist by Daniel Hoechle. Or,
one may attempt to obtain an efficient estimator in the first place by using the methods
put forward by Robertson and Symons (2000) and Coakley, Fuertes, and Smith (2002).

On the other hand, if the unobserved components that create interdependencies
across cross sections are correlated with the included regressors, these approaches will
not work and the FE and RE estimators will be biased and inconsistent. Here one may
follow the approach proposed by Pesaran (2006). Another method would be to apply
an instrumental variables (IV) approach using standard FE IV or RE IV estimators.
However, in practice, finding instruments that are correlated with the regressors and
not correlated with the unobserved factors would be difficult.

The impact of cross-sectional dependence in dynamic panel estimators is more se-
vere. In particular, Phillips and Sul (2003) show that if there is sufficient cross-sectional
dependence in the data and this is ignored in estimation (as it is commonly done by
practitioners), the decrease in estimation efficiency can become so large that, in fact, the
pooled (panel) least-squares estimator may provide little gain over the single-equation
ordinary least squares. This result is important because it implies that if one decides
to pool a population of cross sections that is homogeneous in the slope parameters
but ignores cross-sectional dependence, then the efficiency gains that one had hoped to
achieve, compared with running individual ordinary least-squares regressions for each
cross section, may largely diminish.

Dealing specifically with short dynamic panel-data models, Sarafidis and Robertson
(2006) show that if there is cross-sectional dependence in the disturbances, all estima-
tion procedures that rely on IV and the generalized method of moments (GMM)—such as
those by Anderson and Hsiao (1981), Arellano and Bond (1991), and Blundell and Bond
(1998)—are inconsistent as N (the cross-sectional dimension) grows large, for fixed T
(the panel’s time dimension). This outcome is important given that error cross-section
dependence is a likely practical situation and the desirable N -asymptotic properties of
these estimators rely upon this assumption.2

The above indicates that testing for cross-sectional dependence is important in fit-
ting panel-data models. When T > N , one may use for these purposes the Lagrange
multiplier (LM) test, developed by Breusch and Pagan (1980), which is readily available
in Stata through the command xttest2 (Baum 2001, 2003, 2004). On the other hand,
when T < N , the LM test statistic enjoys no desirable statistical properties in that it

1. Using cluster–robust standard errors will not help here because the correlations across groups of
cross sections take nonzero values.

2. Intuitively, this result holds because for fixed T the common unobserved factor that is present in
the disturbances is not averaged away to zero as N → ∞, even if it is zero-mean distributed. Therefore,

p limN→∞
n

1
N

PN
i (uituit−k)

o
�= 0 ∀ k, which implies that there is no valid instrument to be used

with respect to a lagged value of the dependent variable, regardless of how large the difference apart
in time between the instrument and the endogenous regressor is. See Sarafidis and Robertson (2006,
sec. 3) for more details.
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exhibits substantial size distortions.3 Thus there is clearly a need for testing for cross-
sectional dependence in Stata when N is large and T is small—the most commonly
encountered situation in panels.

This article describes a new Stata command that implements three different tests
for cross-sectional dependence. The tests are valid when T < N and can be used with
balanced and unbalanced panels.

The rest of this article consists of the following: the next section describes three
statistical procedures designed to test for cross-sectional dependence in large-N , small-
T panels—namely, Pesaran’s (2004) cross-sectional dependence (CD) test, Friedman’s
(1937) statistic, and the test statistic proposed by Frees (1995).4 Section 3 describes the
newly developed Stata command xtcsd. Section 4 illustrates using xtcsd by means of
an empirical example based on gross product equations using a balanced panel dataset
of states in the United States during 1970–1986. This is a widely cited dataset available
from Baltagi’s (2005) econometric textbook. A final section concludes the article.

2 Tests of cross-sectional dependence

Consider the standard panel-data model

yit = αi + β′xit + uit, i = 1, . . ., N and t = 1, . . .T (1)

where xit is a K × 1 vector of regressors, β is a K × 1 vector of parameters to be
estimated, and αi represents time-invariant individual nuisance parameters. Under the
null hypothesis, uit is assumed to be independent and identically distributed (i.i.d.) over
periods and across cross-sectional units. Under the alternative, uit may be correlated
across cross sections, but the assumption of no serial correlation remains.

3. See Pesaran (2004) or Sarafidis, Yamagata, and Robertson (2006).
4. Two additional tests have been recently proposed by Sarafidis, Yamagata, and Robertson (2006)

and Pesaran, Ullah, and Yamagata (2006). The SYR test is based on a Sargan’s difference–type test
and is relevant in short dynamic panel models. The PUY test is relevant in panel-data models with
strictly exogenous regressors and normal errors. The SYR test involves computing Sargan’s statistic
for overidentifying restrictions based on two different GMM estimators: one that uses the full set of
instruments available (including those with respect to lags of the dependent variable) and another that
uses only a subset of instruments, in particular those with respect to the exogenous regressors. Under the
null hypothesis of cross-sectional independence, both GMM estimators are consistent, whereas under
the alternative of error cross-sectional dependence, the latter estimator remains consistent but the
former does not. Hence, a large value of the difference between the two statistics would imply that the
moment conditions with respect to lags of the dependent variable are not valid—a direct consequence
of cross-sectional dependence. Since the proposed test can be implemented rather straightforwardly in
Stata, the test is not discussed further here. For more details, see the reference above.
The PUY test statistic is essentially a bias-adjusted normal approximation to the LM test that is valid
for N large and N small, in models with strictly exogenous regressors. Since the Pesaran et al. paper
was made publicly available after the xtcsd command had been completed, we do not discuss this test
any further.
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Thus the hypothesis of interest is

H0: ρij = ρji = cor (uit, ujt) = 0 for i �= j (2)

versus
H1: ρij = ρji �= 0 for some i �= j

where ρij is the product-moment correlation coefficient of the disturbances and is given
by

ρij = ρji =
∑T

t=1 uitujt(∑T
t=1 u2

it

)1/2 (∑T
t=1 u2

jt

)1/2

The number of possible pairings (uit, ujt) rises with N .

2.1 Pesaran’s CD test

In the context of seemingly unrelated regression estimation, Breusch and Pagan (1980)
proposed an LM statistic, which is valid for fixed N as T → ∞ and is given by

LM = T

N−1∑
i=1

N∑
j=i+1

ρ̂2
ij

where ρ̂ij is the sample estimate of the pairwise correlation of the residuals

ρ̂ij = ρ̂ji =
∑T

t=1 ûitûjt(∑T
t=1 û2

it

)1/2 (∑T
t=1 û2

jt

)1/2

and ûit is the estimate of uit in (1). LM is asymptotically distributed as χ2 with
N(N − 1)/2 degrees of freedom under the null hypothesis of interest. However, this
test is likely to exhibit substantial size distortions when N is large and T is finite—a
situation that is commonly encountered in empirical applications, primarily because the
LM statistic is not correctly centered for finite T and the bias is likely to get worse with
N large.

Pesaran (2004) has proposed the following alternative,

CD =

√
2T

N(N − 1)

⎛⎝N−1∑
i=1

N∑
j=i+1

ρ̂ij

⎞⎠ (3)

and showed that under the null hypothesis of no cross-sectional dependence CD
d→

N (0, 1) for N → ∞ and T sufficiently large.

Unlike the LM statistic, the CD statistic has mean at exactly zero for fixed values of T
and N, under a wide range of panel-data models, including homogeneous/heterogeneous
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dynamic models and nonstationary models. For homogeneous and heterogeneous dy-
namic models, the standard FE and RE estimators are biased (see Nickell [1981] and
Pesaran and Smith [1995]). However, the CD test is still valid because, despite the small-
sample bias of the parameter estimates, the FE/RE residuals will have exactly mean zero
even for fixed T , provided that the disturbances are symmetrically distributed.

For unbalanced panels, Pesaran (2004) proposes a slightly modified version of (3),
which is given by

CD =

√
2

N(N − 1)

⎛⎝N−1∑
i=1

N∑
j=i+1

√
Tij ρ̂ij

⎞⎠ (4)

where Tij = #(Ti ∩ Tj) (i.e., the number of common time-series observations between
units i and j),

ρ̂ij = ρ̂ji =

∑
t∈Ti∩Tj

(
ûit − ûi

)(
ûjt − ûj

)
{∑

t∈Ti∩Tj

(
ûit − ûi

)2
}1/2{∑

t∈Ti∩Tj

(
ûjt − ûj

)2
}1/2

and

ûi =

∑
t∈Ti∩Tj

ûit

#(Ti ∩ Tj)

The modified statistic accounts for the fact that the residuals for subsets of t are not
necessarily mean zero.

2.2 Friedman’s test

Friedman (1937) proposed a nonparametric test based on Spearman’s rank correlation
coefficient. The coefficient can be thought of as the regular product-moment correlation
coefficient, that is, in terms of proportion of variability accounted for, except that
Spearman’s rank correlation coefficient is computed from ranks. In particular, if we
define {ri,1, . . . , ri,T } to be the ranks of {ui,1, . . . , ui,T } [such that the average rank is
(T + 1/2)], Spearman’s rank correlation coefficient equals5

rij = rji =
∑T

t=1 {ri,t − (T + 1/2)} {rj,t − (T + 1/2)}∑T
t=1 {ri,t − (T + 1/2)}2

Friedman’s statistic is based on the average Spearman’s correlation and is given by

Rave =
2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

r̂ij

5. Spearman’s rank correlation coefficient as calculated by the Stata spearman command is slightly
different in that it uses a definition of “average rank”.
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where r̂ij is the sample estimate of the rank correlation coefficient of the residuals. Large
values of Rave indicate the presence of nonzero cross-sectional correlations. Friedman
showed that FR = (T − 1) {(N − 1) Rave + 1} is asymptotically χ2 distributed with T−1
degrees of freedom, for fixed T as N gets large. Originally Friedman devised the test
statistic FR to determine the equality of treatment in a two-way analysis of variance.

The CD and Rave share a common feature; both involve the sum of the pairwise
correlation coefficients of the residual matrix rather than the sum of the squared corre-
lations used in the LM test. This feature implies that these tests are likely to miss cases
of cross-sectional dependence where the sign of the correlations is alternating—that is,
where there are large positive and negative correlations in the residuals, which cancel
each other out during averaging. Consider, for example, the following error structure
of uit under H1,

uit = φift + εit (5)

where ft represents the unobserved factor that generates cross-sectional dependence, φi

indicates the impact of the factor on unit i, and εit is a pure idiosyncratic error with
ft ∼ i.i.d. (0, 1), φi ∼ i.i.d.

(
0, σ2

φ

)
, and εit ∼ i.i.d.

(
0, σ2

ε

)
. Here we have

cor (uit, ujt) =
cov (uit, ujt)√

var (uit)
√

var (ujt)
=

E (φi) E (φj)√
E (u2

it)
√

E
(
u2

jt

) = 0

and thereby the CD and Rave statistics converge to 0 even if ft �= 0 and φi �= 0 for some
i. This outcome implies that under alternative hypotheses of cross-sectional dependence
in the disturbances with large positive and negative correlations but with E (φi) = 0,
these tests would lack power and therefore may not be reliable.

To see the relevance of the above argument, consider the initial panel-data model
given by (1) and suppose that there is a single-factor structure in the disturbances, as in
(5), except that the factor loadings are not mean zero, such that E (φi) �= 0. Apparently,
the CD and Rave tests would not be subject to the problem mentioned above in this
case. However, there is a subtle thing that needs to be taken into account; in panels
with N large and T finite, it is common practice to include common time effects (CTEs)
in the regression model to capture “common trends” in the variation of the dependent
variable across cross sections. Using CTEs is equivalent to time demeaning of the data,
which implies that the initial panel-data model can now be written as

(yit − y.t) = (αi − α) + β′ (xit − x.t) + (uit − u.t)
(uit − u.t) =

(
φi − φ

)
ft + (εit − ε.t)

where y.t = 1
N

∑N
i yit, and so on. As we can see, time demeaning of the data has

transformed the disturbances in terms of deviations from time-specific averages, and
therefore it has essentially removed the mean impact of the factors. This is the case
unless of course the factor loadings are mean zero in the first place, in which case time
demeaning is completely ineffective. Notice here two polar cases with regard to the
variance of the factor loadings; at one extreme, if the variance of the φi’s grows large,
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time demeaning will be less effective because even if the mean impact of the factors
has been removed, there is still a considerable amount of cross-sectional dependence left
out in the disturbances. At the other extreme, if the variance of the φi’s is zero, time
demeaning removes cross-sectional dependence from the disturbances. Using CTEs will
usually reduce cross-sectional dependence, but only to a certain extent.

Now suppose that the empirical researcher includes CTEs in the regression model
and wants to see whether there is any cross-sectional dependence left out in the dis-
turbances. Here cov {(uit − u.t) (ujt − u.t)} = E

(
φi − φ

)
E
(
φj − φ

)
= 0. Thus the

original problem emerges again in that the CD and Rave tests will lack power to detect
a false null hypothesis, even if there is plenty of cross-sectional dependence left out in
the disturbances.6

2.3 Frees’ test

Frees (1995, 2004) proposed a statistic that is not subject to this drawback.7 In partic-
ular, the statistic is based on the sum of the squared rank correlation coefficients and
equals

R2
ave =

2
N (N − 1)

N−1∑
i=1

N∑
j=i+1

r̂2
ij

As shown by Frees, a function of this statistic follows a joint distribution of two
independently drawn χ2 variables. In particular, Frees shows that

FRE = N
{

R2
ave − (T − 1)−1

}
d→ Q = a (T )

{
x2

1,T−1 − (T − 1)
}

+ b (T )
{

x2
2,T (T−3)/2 − T (T − 3) /2

}
where x2

1,T−1 and x2
2,T (T−3)/2 are independently χ2 random variables with T − 1 and

T (T − 3) /2 degrees of freedom, respectively, a (T ) = 4 (T + 2) /
{

5 (T − 1)2 (T + 1)
}

and b (T ) = 2 (5T + 6) / {5T (T − 1) (T + 1)}. Thus the null hypothesis is rejected if
R2

ave > (T − 1)−1 + Qq/N , where Qq is the appropriate quantile of the Q distribution.

6. Effectively, time demeaning causes the resulting factor loadings to be mean zero, which implies
that the resulting correlation coefficients of the disturbances will alternate in sign, making the CD and
Rave tests inappropriate.

7. The testing procedure proposed by Sarafidis, Yamagata, and Robertson (2006) is not subject to
this drawback either.
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Figure 1: Normal approximation to the Q distribution (s denotes standard deviation)

The Q distribution is a (weighted) sum of two χ2-distributed random variables and
depends on the size of T . Hence, computation of the appropriate quantiles may be
tedious. In cases where T is not small, Frees suggests using the normal approximation
to the Q distribution by computing the variance of Q; i.e., we can use the following
result,

FRE√
Var (Q)

≈ N (0, 1)

where

Var (Q) =
32
25

(T + 2)2

(T − 1)3 (T + 1)2
+

4
5

(5T + 6)2 (T − 3)
T (T − 1)2 (T + 1)2

The accuracy of the normal approximation is illustrated in figure 1, which shows
the density of Q for different values of T . As we can see, for small values of T the
normal approximation to the Q distribution is poor. However, for T as large as 30, the
approximation does well. Contrary to Pesaran’s CD test, the tests by Frees and Friedman
have been originally devised for static panels, and the finite-sample properties of the
tests have not been investigated yet in dynamic panels.
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3 The xtcsd command

The new Stata command xtcsd tests for the presence of cross-sectional dependence in
FE and RE panel-data models. The command is suitable for cases where T is small
as N → ∞. It therefore complements the existing Breusch–Pagan LM test written by
Christopher F. Baum, xttest2, which is valid for small N as T → ∞. By making
available a series of tests for cross-sectional dependence for cases where N is large and
T is small, xtcsd closes an important gap in applied research.8

3.1 Syntax

xtcsd
[
, pesaran friedman frees abs show

]
As with all other Stata cross-sectional time-series (xt) commands, the data need to be
tsset before you use xtcsd. xtcsd is a postestimation command valid for use after
running an FE or RE model.

3.2 Options

pesaran performs the CD test developed by Pesaran (2004) as explained in section
2.1. For balanced panels, pesaran estimates (3). For unbalanced panels, pesaran
estimates (4). The CD statistic is normally distributed under the null hypothesis
(2) for Ti > k + 1, and Tij > 2 with sufficiently large N . Therefore, there must be
enough cross-sectional units with common points in time to be able to implement
the test.

friedman performs Friedman’s test for cross-sectional dependence by using the non-
parametric χ2-distributed Rave statistic (see section 2.2). For unbalanced panels,
Friedman’s test uses only the observations available for all cross-sectional units.

frees tests for cross-sectional dependence with Frees’ Q distribution (T -asymptotically
distributed). For unbalanced panels, Frees’ test uses only the observations available
for all cross-sectional units.9 For T > 30, frees uses a normal approximation to
obtain the critical values of the Q distribution.

8. xtcsd creates an N × N matrix of correlations of the residuals. Hence, the maximum number of
cross-sectional units that can be handled by xtcsd will be bounded by the matrix size capabilities of
the version of Stata being used (see help limits). If N is prohibitively large, one can run xtcsd for
different subsets of the sample. Rejecting the null hypothesis in all subsets would serve as an indication
that there is cross-sectional dependence in the disturbances that needs to be taken into account.

9. This condition could be highly restrictive when only a few cross-sectional units show many missing
values. In such cases, it might be preferable to drop the problematic cross-sectional units—i.e., those
with many missing values—and perform the test using only the cross-sectional units with a relatively
large number of observations.
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abs computes the average absolute value of the off-diagonal elements of the cross-
sectional correlation matrix of residuals. This option is useful to identify cases of
cross-sectional dependence where the sign of the correlations is alternating, with the
likely result of making the pesaran and friedman tests unreliable (see section 2.2).

show shows the cross-sectional correlation matrix of residuals.

4 Application

We illustrate xtcsd with an empirical example taken from Baltagi (2005, 25). The
example refers to a Cobb–Douglas production function relationship investigating the
productivity of public capital in private production. The dataset consists of a balanced
panel of 48 U.S. states, each observed over 17 years (1970–1986). This dataset and
some explanatory notes can be found on the Wiley web site.10

Following Munnell (1990) and Baltagi and Pinnoi (1995), Baltagi (2005) considers
the following relationship,

ln gspit = α + β1 ln p capit + β2 ln pcit + β3 ln empit + β4unempit + uit (6)

where gspit denotes gross product in state i at time t; p cap denotes public capital
including highways and streets, water and sewer facilities, and other public buildings;
pc denotes the stock of private capital; emp is labor input measured as employment in
nonagricultural payrolls; and unemp is the state unemployment rate included to capture
business cycle effects.

We begin the exercise by downloading the data and declaring that it has a panel-data
format:

. use http://www.econ.cam.ac.uk/phd/red29/xtcsd_baltagi.dta

. tsset id t
panel variable: id (strongly balanced)
time variable: t, 1970 to 1986

Once the dataset is ready for undertaking panel-data analysis, we run a version of
(6) where we assume that uit is formed by a combination of a fixed component specific
to the state and a random component that captures pure noise. Below are the results
of the model using the FE estimator, also reported in Baltagi (2005, 26):

10. The database in plain format is available from
http://www.wiley.com/legacy/wileychi/baltagi/supp/PRODUC.prn; in the Stata Command window,
type net from http://www.econ.cam.ac.uk/phd/red29/ to get the data in Stata format.



492 Testing for cross-sectional dependence

. xtreg lngsp lnpcap lnpc lnemp unemp, fe

Fixed-effects (within) regression Number of obs = 816
Group variable (i): id Number of groups = 48

R-sq: within = 0.9413 Obs per group: min = 17
between = 0.9921 avg = 17.0
overall = 0.9910 max = 17

F(4,764) = 3064.81
corr(u_i, Xb) = 0.0608 Prob > F = 0.0000

lngsp Coef. Std. Err. t P>|t| [95% Conf. Interval]

lnpcap -.0261493 .0290016 -0.90 0.368 -.0830815 .0307829
lnpc .2920067 .0251197 11.62 0.000 .2426949 .3413185
lnemp .7681595 .0300917 25.53 0.000 .7090872 .8272318
unemp -.0052977 .0009887 -5.36 0.000 -.0072387 -.0033568
_cons 2.352898 .1748131 13.46 0.000 2.009727 2.696069

sigma_u .09057293
sigma_e .03813705

rho .8494045 (fraction of variance due to u_i)

F test that all u_i=0: F(47, 764) = 75.82 Prob > F = 0.0000

According to the results, once we account for state FE, public capital has no effect
upon state gross product in the United States. An assumption implicit in estimating
(6) is that the cross-sectional units are independent. The xtcsd command allows us to
test the following hypothesis:

H0: cross-sectional independence

To test this hypothesis, we use the xtcsd command after fitting the above panel-data
model. We initially use Pesaran’s (2004) CD test:

. xtcsd, pesaran abs

Pesaran’s test of cross sectional independence = 30.368, Pr = 0.0000

Average absolute value of the off-diagonal elements = 0.442

As we can see, the CD test strongly rejects the null hypothesis of no cross-sectional
dependence. Although it is not the case here, a possible drawback of the CD test is
that adding up positive and negative correlations may result in failing to reject the null
hypothesis even if there is plenty of cross-sectional dependence in the errors. Including
the abs option in the xtcsd command, we can get the average absolute correlation of
the residuals. Here the average absolute correlation is 0.442, which is a very high value.
Hence, there is enough evidence suggesting the presence of cross-sectional dependence
in (6) under an FE specification.

Next we corroborate these results by using the remaining two tests explained in
section 2, i.e., Frees (1995) and Friedman (1937):
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. xtcsd, frees

Frees’ test of cross sectional independence = 8.386
|--------------------------------------------------------|

Critical values from Frees’ Q distribution
alpha = 0.10 : 0.1521
alpha = 0.05 : 0.1996
alpha = 0.01 : 0.2928

. xtcsd, friedman

Friedman’s test of cross sectional independence = 152.804, Pr = 0.0000

As we would have expected from the highly significant results of the CD test, both
Frees’ and Friedman’s tests reject the null of cross-sectional independence. Since T ≤ 30,
Frees’ test provides the critical values for α = 0.10, α = 0.05, and α = 0.01 from the Q
distribution. Frees’ statistic is larger than the critical value with at least α = 0.01.

Baltagi also reports the results of the model using the RE estimator. The results are
shown below:

. xtreg lngsp lnpcap lnpc lnemp unemp, re

Random-effects GLS regression Number of obs = 816
Group variable (i): id Number of groups = 48

R-sq: within = 0.9412 Obs per group: min = 17
between = 0.9928 avg = 17.0
overall = 0.9917 max = 17

Random effects u_i ~ Gaussian Wald chi2(4) = 19131.09
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

lngsp Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnpcap .0044388 .0234173 0.19 0.850 -.0414583 .0503359
lnpc .3105483 .0198047 15.68 0.000 .2717317 .3493649
lnemp .7296705 .0249202 29.28 0.000 .6808278 .7785132
unemp -.0061725 .0009073 -6.80 0.000 -.0079507 -.0043942
_cons 2.135411 .1334615 16.00 0.000 1.873831 2.39699

sigma_u .0826905
sigma_e .03813705

rho .82460109 (fraction of variance due to u_i)

The results of this second model are in line with those of the previous one, with
public capital having no significant effects upon gross state output. We now test for
cross-sectional independence by using the new RE specification:

(Continued on next page)
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. xtcsd, pesaran

Pesaran’s test of cross sectional independence = 29.079, Pr = 0.0000

. xtcsd, frees

Frees’ test of cross sectional independence = 8.298
|--------------------------------------------------------|

Critical values from Frees’ Q distribution
alpha = 0.10 : 0.1521
alpha = 0.05 : 0.1996
alpha = 0.01 : 0.2928

. xtcsd, friedman

Friedman’s test of cross sectional independence = 144.941, Pr = 0.0000

The conclusion with respect to the existence or not of cross-sectional dependence in
the errors is not altered. The results show that there is enough evidence to reject the null
hypothesis of cross-sectional independence. The newly developed xtcsd Stata command
shows an easy way of performing three popular tests for cross-sectional dependence.

5 Concluding remarks

This article has described a new Stata postestimation command, xtcsd, which tests
for the presence of cross-sectional dependence in FE and RE panel-data models. The
command executes three different testing procedures—namely, Friedman’s (1937) test
statistic, the statistic proposed by Frees (1995), and the CD test developed by Pesaran
(2004). These procedures are valid when T is fixed and N is large.11 xtcsd can also
perform Pesaran’s CD test for unbalanced panels.

Our view is that all these tests for cross-sectional dependence should not be regarded
as competing but rather as complementary. If T is large relative to N , the LM test may
be used. If N is large relative to T and the model is static, all different tests provided
by xtcsd may be suitable, unless the empirical researcher has reason to believe that the
correlation coefficients of the disturbances alternate in sign (or common time effects have
been included in the model). In that case only the Frees test may be used.12 One can
ascertain whether this is the case by using the option abs, which computes the average
absolute value of the off-diagonal elements of the cross-sectional correlation matrix of
the residuals. If this takes a large value and the different tests provide contradicting
results in the sense that Pesaran’s and Friedman’s tests fail to reject the null hypothesis,
whereas Frees’ test does not, inferences should be based on the latter. In dynamic panels,
Pesaran’s test remains valid under FE/RE estimation (even if the estimated parameters
are biased) and therefore it may be the preferred choice, since the properties of the
remaining tests in dynamic panels are not yet known. On the other hand, if common
time effects have been included in the dynamic panel (and the panel is short), the test
by Sarafidis, Yamagata, and Robertson (2006) may be used.

11. The CD test may also be used with both T and N large.
12. However, Pesaran, Ullah, and Yamagata (2006) indicate that Frees’ test may not work well in
models with explanatory variables when N is large.



R. E. De Hoyos and V. Sarafidis 495

In conclusion, the xtcsd command complements the Stata command xttest2 that
tests for the presence of error cross-sectional dependence with T large and finite N .
Hence, xtcsd closes an important gap in applied research.
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